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Abstract

In this paper we describe a one-dimensional adaptive moving mesh method and its application to hyperbolic conserva-
tion laws from magnetohydrodynamics (MHD). The method is robust, because it employs automatic control of mesh
adaptation when a new model is considered, without manually-set parameters. Adaptive meshes are a common tool for
increasing the accuracy and reducing computational costs when solving time-dependent partial differential equations
(PDEs). Mesh points are moved towards locations where they are needed the most. To obtain a time-dependent adaptive
mesh, monitor functions are used to automatically ‘monitor’ the importance of the various parts of the domain, by assign-
ing a ‘weight’-value to each location. Based on the equidistribution principle, all mesh points are distributed according to
their assigned weights. We use a sophisticated monitor function that tracks both small, local phenomena as well as large
shocks in the same solution. The combination of the moving mesh method and a high-resolution finite volume solver for
hyperbolic PDEs yields a serious gain in accuracy at relatively no extra costs. The results of several numerical experiments
including comparisons with h-refinement are presented, which cover many intriguing aspects typifying nonlinear magneto-
fluid dynamics, with higher accuracy than often seen in similar publications.
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1. Introduction

Adaptive techniques have become common use in many solvers for partial differential equations (PDEs)
over the past decades. Finite volume methods are often enhanced with local mesh refinement. Moving mesh
techniques have mainly been used in combination with finite element and finite difference methods in the past.
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We combine a high-resolution finite volume solver with a moving mesh method, further improved by a sophis-
ticated monitor function. This results in a robust method for solving hyperbolic systems of nonlinear PDEs:
little user input is needed, the solver automatically adapts itself to the considered problem. The method was
successfully used on hyperbolic macroscopic traffic flow models, and gas dynamics [22]. In this paper we solve
a range of problems from magnetohydrodynamics (MHD), including interesting, often ignored, physical
aspects of the solutions.

Many interesting phenomena in plasma fluid dynamics can be described within the framework of magne-
tohydrodynamics (MHD). Numerical studies in plasma flows frequently involve simulations with highly vary-
ing spatial and temporal scales. As a consequence, numerical methods on uniform meshes may be inefficient to
use, since a very large number of mesh points is needed to resolve the spatial structures, such as shocks, con-
tact discontinuities, shear layers, or current sheets. For the efficient study of these phenomena, we need adap-
tive mesh methods which automatically track and spatially resolve all of these structures. The problems
considered here come from previous work by Tóth et al. [21,20], Keppens [11], Torrilhon [19], and Zegeling
and Keppens [27].

Research in adaptive methods has many aspects. Firstly, there are several different methods. Local mesh
refinement, or h-refinement, adapts the mesh by locally adding or removing mesh points. This technique
has gotten the most attention, as the refinement is easily prescribed, and error analysis is still carried out fairly
easily. Moving mesh methods, or r-refinement, relocate mesh points to refine the mesh where needed.
Although the governing equations for mesh adaptation are more complex, this method has distinct advantages
over h-refinement. In principle, it is easy to implement; no mesh points are added or removed, so that admin-
istration is no issue here. In its uncoupled form, which we use here, it can be combined with any existing PDE
solver without necessary changes. Finally, moving the mesh points to any location provides more freedom in
adaptation than inserting new points at discrete locations.

Huang et al. [8] prescribe mesh movement by a moving mesh PDE (MMPDE), which is solved simulta-
neously with the physical PDEs for one-dimensional models. Although this avoids solution interpolation,
the coupled system may be hard to solve due to differences in time scales and desired error tolerances. For
two-dimensional models the MMPDE and physical PDEs are often decoupled and solved in an alternating
way, as Huang and Russell [9] show. Stockie et al. [12] also use an MMPDE-based decoupled approach
for solving one-dimensional hyperbolic systems of conservation laws. It is similarly based on the equidistribu-
tion principle that follows from a variational formulation of mesh energy minimization. Tang and Tang [15]
extend this approach to two-dimensional domains, but use a stationary description for the mesh movement,
hence a decoupled approach by definition. Their monitor function still needs parameterization for each new
problem by hand, though. In this paper, we take the latter approach, with an improved monitor function.
Zegeling et al. [26] have recently used a similar method for two-dimensional hydrodynamic problems. The
smoothness of mesh distribution is important for decreasing interpolation errors in the decoupled approach.
The most powerful means for this is a good choice of monitor function. Huang has done much research on
different monitor functions [5, with Cao and Russell], monitor quality [6], and mesh quality [7]. Error analysis
quickly becomes complicated for moving mesh methods, but Beckett and Mackenzie [1,2] have done some
convergence studies for these methods. Tang [16] recently presented an interesting overview paper on moving
mesh methods for computational fluid dynamics. Zegeling and Keppens [27] also employ a moving mesh
method, but it is fully coupled and solved using the method of lines and an implicit time solver. Although their
mesh movement is fairly sophisticated, ensuring mesh-consistency and smooth mesh movement, it still needs
manually-set adaptivity parameters. Furthermore, an artificial diffusion term is added in order to handle dis-
continuities in the physical solution. To avoid these artificial terms, we use a high-resolution finite volume
method with MUSCL-type flux-limiters as proposed by Van Leer [25].

The layout of this paper is as follows. In the next section, we present the full set of MHD equations and
their physical meaning. In Section 3, we describe the adaptive moving mesh method, based on the equidistri-
bution principle, including a conservative solution interpolation. This is followed by details on the high-
resolution finite volume method. Special attention is also given to a more sophisticated monitor function.
Numerical experiments are presented in Section 4. Not only accuracy is considered, but also computational
efficiency, in comparison with uniform methods. Also, some experiments compare r-refinement with h-refine-
ment. Besides, interesting physical aspects of MHD are studied, such as pseudo-convergence to incorrect crit-
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ical solutions, propagation of Alfvén waves, and high speed magnetosonic effects. Section 5 presents conclu-
sions and suggestions for improvement.

2. The equations of magnetohydrodynamics

The MHD equations govern the dynamics of a charge-neutral ionized gas, or ‘plasma’. Just as the conser-
vative Euler equations provide a continuum description for a compressible gas, the MHD equations express
the basic physical conservation laws a plasma must obey. Because plasma dynamics are influenced by mag-
netic fields through the Lorentz-force, the needed additions in going from hydrodynamic to magnetohydrody-
namic behavior consist of a vector equation for the magnetic field evolution and extra terms in the Euler
system that quantify the magnetic force and energy density.

Using the conservative variables density q, momentum density m ” qv (with velocity v), magnetic field B, and
total energy density e, the ideal MHD equations can be written as follows (cf. [4,21,20]):

Conservation of mass:
oq
ot
þr �m ¼ 0. ð1Þ
Conservation of momentum:
om

ot
þr � ðqvv� BBÞ þ rptot ¼ 0. ð2Þ
Magnetic field induction:
oB

ot
þr � ðvB� BvÞ ¼ 0. ð3Þ
Conservation of energy:
oe
ot
þr � ðevþ vptot � BB � vÞ ¼ 0. ð4Þ
Hereafter, we will abstract from the above four quantities by introducing the solution vector q(x, t), where
x ” [x,y]T or x ” [x,y,z]T. In (2) and (4) the total pressure ptot consists of both a thermal and a magnetic con-
tribution, as given by:
ptot ¼ p þ B2

2
; where p ¼ ðc� 1Þ e� q

v2

2
� B2

2

� �
ð5Þ
is the thermal pressure (B2 ” B Æ B). The adiabatic constant c is the ratio of specific heats of the plasma. This set
of equations must be solved in conjunction with an important condition on the magnetic field B, namely the
non-existence of magnetic ‘charge’ or monopoles. Mathematically, it is easily demonstrated that this property
can be imposed as an initial condition alone, since
r � Bjt¼0 ¼ 0) r � BjtP0 ¼ 0. ð6Þ

In multi-dimensional numerical MHD, the combined spatio-temporal discretization may not always ensure
this conservation of the solenoidal character of the vector magnetic field. Note that in our 1D applications
this solenoidal property is satisfied automatically by construction (see below).

2.1. Derivation of 1.5D and 1.75D models

If we restrict the MHD model (1)–(6) to variations in one spatial dimension x, i.e., oq/oy = 0, with possibly
non-vanishing y-components for the vector quantities, we obtain a 5-component PDE system in 1D, which is
sometimes referred to as ‘1.5D’. If we also include possibly non-vanishing z-components of the vector quan-
tities, but still keep o/oz = 0 for the flux, we obtain a 7-component PDE system in 1D, which is sometimes
referred to as ‘1.75D’. This system is formally written as
o

ot
qþ o

ox
f ðqÞ ¼ 0; x 2 ½xL; xR�; t > 0. ð7Þ



Fig. 1. Wave structure of a 1.75D MHD Riemann problem.
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Here, q = (q,m1,m2,m3,B2,B3,e)T is the vector of conserved variables (m1, m2, m3 are now the x-, y- and
z-components of the momentum vector and B2 and B3 denote the y- and z-component of the magnetic induc-
tion), with the flux-vector f = (f1, . . ., f7)T given by
f1 ¼ m1;

f2 ¼
m2

1

q
� B2

1 þ ðc� 1Þe� ðc� 1Þm
2
1 þ m2

2 þ m2
3

2q
þ ð2� cÞB

2
1 þ B2

2 þ B2
3

2
;

f3 ¼
m1m2

q
� B1B2;

f4 ¼
m1m3

q
� B1B3;

f5 ¼ B2

m1

q
� B1

m2

q
;

f6 ¼ B3

m1

q
� B1

m3

q
;

f7 ¼
m1

q
ce� ðc� 1Þm

2
1 þ m2

2 þ m2
3

2q
þ ð2� cÞB

2
1 þ B2

2 þ B2
3

2

� �
� B1 B1

m1

q
þ B2

m2

q
þ B3

m3

q

� �
.

ð8Þ
For notational convenience we do not use explicit vector notation for q and f: only for the physical MHD
quantities we do so (e.g., m and B). The first component of the magnetic induction vector is kept at a constant
value B1. The vanishing divergence of the magnetic field is thereby trivially satisfied in this model situation.
The remaining set of 7 PDEs given by (7) constitutes the physical model used for the ‘1.75D shock tube’ sim-
ulation found hereafter. Furthermore, several 1.5D simulations are shown; these are again described by (7),
where f4 and f6 drop out of the flux formulae, as well as all terms involving m3 and B3. Keppens [11] also de-
rives these two models and solves two shock tube problems on uniform meshes.

We first indicate how this system is further manipulated and discretized to solve alternately for the adaptive
mesh with its corresponding solution.

2.2. Eigen-structure for MHD

The eigenvalues of the flux Jacobian fq ” of/oq represent the speeds at which the various waves of an MHD
Riemann solution move. In 1.5D these are an entropy wave (v1), two fast (v1 ± cf) and two slow (v1 ± cs) mag-
netosonic waves, where
c2
f;s ¼

1

2

cp þ B2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp þ B2

q

� �2

� 4
cp
q

B2
1

q

s0@ 1A. ð9Þ
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For the full system of MHD equations, i.e. 1.75D, two additional eigenvalues represent Alfvén waves with
speed v1 ± ca, where ca ¼ B1=

ffiffiffi
q
p

. In general, the following ordering holds: cs 6 ca 6 cf. Fig. 1 shows the wave
structure of a 1.75D MHD Riemann problem.
3. The moving mesh method

This section describes the moving mesh finite volume approach as introduced by Tang and Tang [15]. For
increased robustness, we use a more sophisticated monitor function, originally proposed by Beckett et al. [3].
This combination yields a powerful solver that tracks and resolves both small, local and large solution gradi-
ents automatically. No parameter adaptation by hand using prior knowledge on the eventual shape of the
solution is necessary. Hence, the solver can be quickly applied to problems from entirely different application
areas.

The numerical algorithm is shown below. The symbol Qj + 1/2 represents the numerical solution for q, as will
be introduced in (11). Each time step consists of a mesh moving step and a physical PDE solving step. The next
two sections describe these separate steps. Finally, Section 3.3 deals with monitor functions in more detail.
Algorithm 1 MMFVSOLVE – 1D moving mesh finite volume PDE solver.
Generate an initial uniform mesh: x0

j ¼ xL þ j � xR�xL

N ; j ¼ 0; . . . ;N .
Compute initial values Q0

jþ1=2 based on cell average of q(x, 0).
while tn < T do

repeat

m ¼ 0; x½0�j ¼ xn
j ; Q½0�jþ1=2 ¼ Qn

jþ1=2; j ¼ 0; . . . ;N .

Move grid fx½m�j gto fx
½mþ1�
j g, using a Gauss–Seidel iteration (12).

Compute the solution fQ½mþ1�
jþ1=2g on the new mesh, using (13).

until m P mmax or ix[m+1] � x[m]i 6 �
Compute Qn+1 using high-resolution finite volumes (14).

end while
3.1. Mesh adaptation in 1D

The solution of the MHD equations, denoted by q 2 Rm, is defined on the physical domain
Xp � ½xL; xR� � R with coordinate x. Introducing a fixed computational domain Xc � ½0; 1� � R, with coordi-
nate n, a coordinate transformation, or one-to-one mesh map, is defined by:
x ¼ xðnÞ; n 2 Xc;
or its inverse
n ¼ nðxÞ; x 2 Xp.
In a variational approach, finding the most appropriate mesh map x(n) for some solution profile is equivalent
to finding a n that minimizes a mesh energy functional EðnÞ. A simple, but effective, mesh energy is:
EðnÞ ¼ 1

2

Z
Xp

n2
x

1

x
dx;
where x > 0 is a monitor function, which will be considered in more detail in Section 3.3. In general, x is
defined in terms of spatial derivatives of q. In a variational formulation (cf. [17]), minimization of the mesh
energy yields the Euler–Lagrange equation:
1
nx

� �
¼ 0.
x x



Fig. 2. The discretized spatial domain with ‘beyond-boundary’-points.
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This is equivalent to the equidistribution principle in 1D, xxn = constant, or:
ðxxnÞn ¼ 0. ð10Þ
Now that the adaptive mesh is implicitly prescribed, a numerical algorithm can be set up, that determines the
new mesh and updates the solution on it.

3.1.1. Domain discretization

To facilitate differential operators with stencils up to size 5, a domain discretization as depicted in Fig. 2 is
used. The domain Xp ” [xL,xR] is discretized using N + 1 mesh points, with two additional mesh points on
both sides outside Xp. The computational domain Xc is discretized with N + 1 uniform coordinates nj = j/N
(0 6 j 6 N).

As the finite volume solver uses cell averaged solution values, the discrete solution Qj + 1/2 is defined on the
cell center:
Qjþ1
2
� 1

Dxjþ1=2

Z xjþ1

xj

qðxÞdx; 0 6 j 6 N � 1; ð11Þ
where the local cell size, or mesh width is given by
Dxjþ1=2 � xjþ1 � xj.
3.1.2. Mesh redistribution

For every time t > 0, the new mesh should satisfy the redistribution Eq. (10). Using central differences for
(xn)j + 1/2, and inserting the current solution and monitor values yields a linear system in [x1, . . .,xN�1]T, which
is solved with a Gauss–Seidel (GS) iteration:
x½mþ1�
j ¼

x u½m�j�1=2

� �
x½mþ1�

j�1 þ x u½m�jþ1=2

� �
x½m�jþ1

x u½m�j�1=2

� �
þ x u½m�jþ1=2

� � ; ð12Þ
where x½mþ1�
j ðm ¼ 0; 1; . . .Þ denotes the updated mesh point. Typically a mere three to five steps are performed

before the mesh adaptation is considered appropriate (mmax = 3–5, � = 10�6). In most cases the mmax-bound is
reached before the �-bound. Each mesh moving step also involves a solution interpolation, as described here-
after. The small number of GS steps keeps the costs of this interpolation low. Many, more advanced solvers
exist, but accuracy of mesh movement is not the most critical aspect here. Tang and Tang give proof [15] of the
preservation of monotonic order of x[m]:
x½m�jþ1 > x½m�j ) x½mþ1�
jþ1 > x½mþ1�

j ; 0 6 j 6 N ;
or, equivalently: xn is strictly monotonically increasing. This is desirable, since otherwise mesh points might
collapse and solution gradients could blow up.

3.1.3. Solution updating on the new mesh

In each redistribution step, mesh points x are moved to a new location ~x. Also, the solution Q needs to be
updated on the new mesh, yielding ~Q. A conservative interpolation technique is used, to maintain physically
correct solutions. Tang and Tang [15] introduce a conservative interpolation technique.

Assuming that the difference c(x) between the old mesh x and new mesh ~x � x� cðxÞ is small, using a per-
turbation method eventually yields the interpolation relation:
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Q½mþ1�
jþ1=2 ¼

x½m�jþ1 � x½m�j

� �
Q½m�jþ1=2 � ðcQÞ½m�jþ1 � ðcQÞ½m�j

� �
x½mþ1�

jþ1 � x½mþ1�
j

; ð13Þ
where the upwinding (cf. Van Leer [23, Eq. (12)]) numerical fluxes are approximated by:
ðcQÞj ¼
cj

2
Qþj þ Q�j
� �

� jcjj
2

Qþj � Q�j
� �

.

This method uses the ‘wave speed’ c½m�j ¼ x½m�j � x½mþ1�
j , and Qþj and Q�j , which approximate Qj at a cell edge, are

defined by (18). The interpolation relation (13) is in a conservative flux-differencing form, hence the interpo-
lation satisfies the following conservation property:
X

j

D~xjþ1
2

~Qjþ1
2
¼
X

j

Dxjþ1
2
Qjþ1

2
.

The updating of the solution is preceded by a single mesh redistribution step; the combination of the two
forms the body of the GS iteration.

3.2. Finite volume solver for physical PDEs

On the redistributed mesh, the physical PDEs can be solved by any PDE solver that accepts nonuniform
discretizations. We use a second order finite volume method. In the following, the mesh at time tn is given
by xn := x[m+1].

One-dimensional hyperbolic systems of conservation laws are described by the PDE system in (7). Integrat-
ing the PDE over the control volume ½tn; tnþ1i 	 ½xn

j ; x
n
jþ1� leads to the following explicit finite volume method

(we improve the time integration in (20)):
Qnþ1
jþ1=2 ¼ Qn

jþ1
2
� tnþ1 � tn

xn
jþ1 � xn

j
F n

jþ1 � F n
j

� �
ð14Þ

¼: Qn
jþ1

2
þ DtnLjþ1

2
ðQnÞ; ð15Þ
where the cell average Qnþ1
jþ1=2 is defined in (11) and F n

j is some numerical flux satisfying
F n
j ¼ F ðQn;�

j ;Qn;þ
j Þ; F ðQ;QÞ ¼ f ðQÞ. ð16Þ
We use a local Lax–Friedrichs (LF) flux
F ðQa;QbÞ ¼
1

2
½f ðQaÞ þ f ðQbÞ � max

Q2fQa;Qbg
fjfqjgðQb � QaÞ�; ð17Þ
where the largest absolute eigenvalues of the Jacobian fq ” of/oq are used. Local LF is less diffusive than nor-
mal LF, since it locally limits the numerical viscosity instead of having a uniform viscosity on the entire
domain.

To determine flux values at cell boundaries, the solution values Qj are approximated using values from the
cell centers at both the left and right side. In (16), Qn;�

j are defined using the initial reconstruction technique:
Qn;�
j ¼ Qj�1=2 þ

1

2
ðxn

j � xn
j�1ÞeS j�1=2; ð18Þ
where eSjþ1=2 is an approximation of the slope qx at xn
jþ1=2, defined by:
eS jþ1=2 ¼ signðeSþjþ1=2Þ þ signðeS�jþ1=2Þ
� � jeSþjþ1=2

eS�jþ1=2j
jeSþjþ1=2j þ jeS�jþ1=2j

; ð19Þ
with
eSþjþ1=2 ¼
Qn

jþ3=2 � Qn
jþ1=2

xn
jþ3=2 � xn

jþ1=2

; eS�jþ1=2 ¼
Qn

jþ1=2 � Qn
j�1=2

xn
jþ1=2 � xn

j�1=2

.
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The above is a MUSCL-type method, where the slope approximation (19) uses a monotonicity preserving
slope limiter as formulated by Van Leer [24, Eq. (67)].

To obtain a higher accuracy in the time range, the standard one-step finite volume formulation (15) is
replaced by a second-order Runge–Kutta scheme:
Q
jþ1=2 ¼ Qn
jþ1

2
þ DtnLjþ1

2
ðQnÞ;

Qnþ1
jþ1=2 ¼

1

2
Qn

jþ1
2
þ Q
jþ1

2
þ DtnLjþ1

2
ðQ
Þ

� �
.

ð20Þ
In a method with changing mesh widths, the stability criterion for the time step is extra important. The stan-
dard CFL limit reads
fqDt
Dx

���� ���� 6 1 8Dt;Dx; eigenvalues of fq. ð21Þ
To enforce higher accuracy, the Courant number will here be limited by a parameter C, thereby limiting the
time step to:
Dtn
6 Cmin

j

Dxjþ1=2

fqðQn
jþ1=2Þ

��� ��� ; ð22Þ
where 0 < C 6 1. Notice how we determine the limit on the time step locally, instead of using, e.g.,
Dtn
6 minjDxjþ1=2=maxjjfqðQn

jþ1=2Þj.

3.3. A sophisticated monitor function

An often seen, most basic choice for controlling adaptivity is the arc length-type monitor function:
xðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aðoq=oxÞ2

q
; ð23Þ
where the adaptivity parameter a controls the amount of adaptivity. The value 1 is set as floor on the monitor
function to prevent all points from concentrating in just the steep parts of the solution. This type of monitor
has two problems. Firstly, a is problem dependent; a problem from gas dynamics might require an a of an
entirely different order than a problem from hyperbolic macroscopic traffic flow models. Secondly, a is a con-
stant, whereas the solution profile might change significantly through time. The chosen a based on the solution
at the initial time may be far from optimal at some point of time t > 0.

From now on we will use the term ‘critical’ for parts of the domain where refinement is especially necessary.
For the monitor function (23), ‘critical’ is equivalent to ‘steep’, because of the first-order derivative. In general,
higher order derivatives may be used as well.

To overcome the before-mentioned disadvantages, Beckett and Mackenzie [1] introduce a more sophisti-
cated monitor function, which we schematically define as:
xðqÞ ¼ aðqÞ þ /ðqÞ.

It has a solution dependent floor value a(q), where a(q) is defined as an average value of some function /(q).
Most often, / will contain solution gradients. Huang [6] generalizes this monitor function with a parameter b
that controls the ratio of points in critical parts. Here, we furthermore generalize to PDE systems, i.e. when q
has m > 1 components. We define the monitor function xðqÞ 2 ðXp 	 RP0 ! RmÞ ! R>0 as:
xðqÞ ¼
Xm

p¼1

ð1� bÞapðqÞ þ b
oqp

on

���� ����1=2
" #

; ð24Þ
where
apðqÞ ¼
Z

Xc

oqp

on

���� ����1=2

dn. ð25Þ
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The critical regions are now identified by the computational derivative oq/on, which is smoother than the phys-
ical derivative oq/ox. The solution dependent a(q) averages this derivative for each component qp separately.
Finally, the m monitor values for all components are summed. Although b is still a user-defined parameter, we
found b = 0.8 a suitable value for a range of different problems and keep it fixed at that for all numerical
experiments in the following section.

Following the approach of Huang [6], it can be shown that for monitor (24), b is indeed the ratio of points
in critical parts:
b ¼
R

Xp
b/dxR

Xp
ð1� bÞh/i þ b/dx

; ð26Þ
where Æ/æ is the averaged /, i.e., a(q). Hence, for our fixed choice of b = 0.8, approximately 80% of the mesh
points is positioned in critical parts of the domain.

Another technique to prevent the mesh points from being moved too brusquely, when some local gradient
changes rapidly, is to smoothen the monitor function. This is done by applying a low-pass filter, possibly mul-
tiple times:
xsmooth
jþ1=2  

1

4
xjþ3

2
þ 2xjþ1=2 þ xj�1=2

� �
; ð27Þ
where xj + 1/2 = x(Qj + 1/2). Even with the sophisticated monitor (24) we found a single application of this
smoothing operator to be beneficial and sufficient.
4. Numerical experiments

The moving mesh method is now used on a selection of problems from magnetohydrodynamics. Although
still in one spatial dimension, these problems have five (m = 5) or even seven (m = 7) model equations, and
consequently exhibit a range of shocks, rarefaction waves and contact discontinuities (at most m). Some prob-
lems were also used by Zegeling and Keppens [27] for testing their adaptive method of lines approach, which is
a fully-coupled moving mesh method.

The numerical results are compared to a reference solution. Solutions to the shock tube problems (Sections
4.1–4.3) were obtained with the exact Riemann solver by Torrilhon [18]. The shear Alfvén problem (Section
4.4) is compared to a 2500 points adaptive solution. For all problems, solutions by the widely-used Versatile
Advection Code [14] (VAC, see http://www.phys.uu.nl/~toth) are also considered.

A discrete L1 norm is used for an error measure on adaptive meshes:
EL1
¼
XN

j¼1

DxjjQjþ1=2 � qðxjþ1=2Þj; ð28Þ
which is an approximation to the area between the numerical and exact solution profile. Note that E is still a
vector in Rm, error measures may later pick out single components from the solution, e.g., density, or sum
them. In addition to observing the numerical errors (28), we have also checked some physical properties of
the computed solution, such as conservation and positivity of solution components.

Most problems have homogeneous Neumann boundary conditions, unless stated otherwise. We expand
solution values to the two ghost cells on the left and right by copying the first value inside the domain (i.e.
Q�3/2 = Q�1/2 = Q1/2 at the left). All experiments keep the CFL number at 0.5 for increased accuracy, although
values up to 1.2 did not result in instability yet. We used a Pentium M 1.8 GHz notebook for all experiments.

4.1. MHD shock tube in 1.5D: computational efficiency

One-dimensional shock tube problems are Riemann problems, where an imaginary tube contains plasmas
in two different states, separated by a diaphragm. At t = 0 the diaphragm opens and the left and right state
start to interact. In hydrodynamics, Sod’s shock tube is the best known example problem. Here, we consider
the classical MHD shock tube in 1.5D, initially described by Brio and Wu [4], which now is widely considered
a benchmark problem for MHD simulations.

http://www.phys.uu.nl/~toth


A. van Dam, P.A. Zegeling / Journal of Computational Physics 216 (2006) 526–546 535
The problem is set up in the domain [0,1], with the discontinuity at x = 0.5. We simulate for times
t 2 [0, 0.1]. The plasma is initially at rest (m = 0), with c = 2 and B1 ¼ 0:75. The problem is co-planar, i.e.,
B2,L = �B2,R. The difference in density and pressure between the two states is: qL = 8qR = 1, and
pL = 10pR = 1. In conservation form, the initial conditions are:
½q;m1;m2;B2; e�L ¼ ½ 1; 0; 0; 1; 1:78125� if x 6 0:5;

½q;m1;m2;B2; e�R ¼ ½0:125; 0; 0; �1; 0:88125� if x > 0:5;
ð29Þ
where subscripts L and R denote the left and right state. Homogeneous Neumann boundary conditions are
used for all components.

4.1.1. Numerical results

First, we compare our moving mesh method to the same method with a uniform mesh. Also, a finite volume
solver from the VAC package is considered; we use it with a similar TVD Lax–Friedrichs flux and Van Leer
flux limiter for a fair comparison. We sum all five components of EL1

to study the overal error. Fig. 3 shows the
density and v1 component of the velocity on the first row. The moving mesh and uniform solutions have
N = 250 mesh points, and the uniform VAC solution has N = 1500 (both take equal running time approxi-
mately). The bottom left diagram focuses on the middle three waves. The uniform solution is quite diffusive,
a known property of Lax–Friedrichs-type methods. VAC with 1500 points has a much higher resolution, espe-
cially at the compound wave. Our moving mesh result is slightly more accurate for all shocks. Its overall error
Fig. 3. Solutions to the Brio and Wu problem.
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is 9.1 · 10�3, and the VAC result has an overall error of 1.3 · 10�2. The top right diagram shows the v1 com-
ponent of the velocity. It is very accurate and does not suffer from the dispersive effects observed by Zegeling
and Keppens [27, Fig. 2]. Finally, the bottom right diagram shows the mesh movement through time. Note
how the rightmost fast rarefaction fan is also properly detected.

4.1.1.1. Computational efficiency. The increased accuracy comes at a price: the mesh movement and conservative
interpolation take about 50% of the total running time. The amount of mesh points needed is seriously smaller,
though, so the moving mesh method should be more efficient on the whole. To test this, the Brio and Wu prob-
lem was solved with N = 250, 500, 1000, 2000, 4000, 6000, 8000, 12,000, 24,000, and 48,000. The error was deter-
mined using (28) and summing all five components, as we are interested in overall accuracy here.

The diagram in Fig. 4 sets out these errors on the horizontal axis and the running time on the vertical axis.
The moving mesh method is used with monitor (24), and twice with the arc length-type monitor (a = 1 and
10). Since VAC programs are in FORTRAN and our method runs in MATLAB, the VAC timings are nor-
malized using
tVAC;norm ¼ tVAC � tunif ;N¼Nnorm=tVAC;N¼Nnorm ;
where we normalized with the Nnorm = 8000 measurements. The uniform lines for MATLAB and VAC now
almost coincide for all N, which justifies the normalization. The arc length runs are never efficient enough to
beat uniform solutions. With the advanced monitor function, the moving mesh method becomes a lot more
efficient. The gain factor in running time, compared to uniform runs, is approximately 3. A possible improve-
ment could be to adapt the mesh every k > 1 time steps. This will reduce the mesh movement and interpolation
costs. In their study of efficiency of h-refinement, Keppens et al. have an average of 20% additional costs for
mesh adaptation in 1D [10]. Also note how for the same amount of points (e.g., N = 500) the obtained accu-
racy differs (by almost a factor 10 between adaptive and uniform runs). When computer memory is an issue,
adaptive methods can still compute accurate solutions with relatively small discrete solution vectors. This
becomes a definite advantage in higher-dimensional simulations.

4.1.1.2. r-Refinement vs. h-refinement. In this research we perform mesh adaptation by points movement
(r-refinement). An alternative is local mesh refinement (h-refinement), where mesh cells are split into smaller
cells or merged again. An adaptive version of the previously used VAC package exists: AMRVAC [10]. It uses
Fig. 4. Computational efficiency for the Brio and Wu problem.
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L mesh levels, where level 1 is the initial uniform mesh. We used AMRVAC with a refinement ratio of 2 on
each level (i.e. splitting a cell into two equal pieces), hence the maximal mesh refinement is 2L�1.

The advantage of h-refinement is its simplicity. The disadvantage is that the eventual number of mesh
points is unknown, which can lead to unexpectedly long running times. Besides, good results require proper
knowledge of the parameters by which the user controls refinement (initial mesh size, number of refinement
levels, refinement ratios, and the tolerance level for deciding on local refinement). Our method is virtually free
of user-defined parameters and is problem independent. For proper choices of refinement levels and tolerance,
AMRVAC also produces good results.

We ran the Brio and Wu problem (29) again. Fig. 5 shows the AMRVAC results. The left diagram shows
the density, notice how all shocks are represented properly on the maximal refinement level. Also, both rar-
efaction waves are properly detected and refined. We used Ninitial = 100 and six mesh levels, with tolerance
�tol = 0.002. All solution components are used equally in the error estimate for deciding on local refinement.
The final mesh contains 314 mesh points and has an overall error of 1.4 · 10�2. Running time is 5.1 s, which
would roughly scale to 35 s in MATLAB. Our N = 250 result reaches a smaller error in 16 s.

The right diagram in Fig. 5 compares three AMRVAC results with our N = 250 result. The smallest mesh
cell in our experiment is 13 times smaller than in the original uniform mesh. This can be compared to five
refinement levels (25�1 = 16). The biggest mesh cells are between two and five times larger than the initial uni-
form cells. As AMRVAC does not coarsen its initial mesh, we start AMRVAC also with smaller mesh sizes
(N = 50 and 100). The diagram also shows the final number of points; only for N = 50 this is less than 250.
Table 1 summarizes the results and lists the overall errors.

AMRVAC contains more powerful methods as well: MUSCL-type solvers that use problem-specific Rie-
mann solvers, and more sophisticated limiters. We used TVDLF with a Van Leer limiter for an equal com-
parison with our solver.

4.2. MHD shock tube in 1.75D: physical energy loss

The 1.5D Brio and Wu shock tube of the previous section can be extended to 1.75D. Keppens [11] describes
a problem where all seven MHD waves show up. The problem is set up in the domain [0,1], with the discon-
tinuity at x = 0.35. We simulate for times t 2 [0, 0.08]. The plasma has c = 5/3 and �B1 ¼ 1. In primitive form,
the initial conditions are:
Fig. 5
refinem
½q; v1; v2; v3;B2;B3; p�L ¼ ½0:5; 0; 1; 0:1; 2:5; 0; 0:1� if x 6 0:35;

½q; v1; v2; v3;B2;B3; p�R ¼ ½0:1; 0; 0; 0; 2; 0; 0� if x > 0:35.
ð30Þ
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Table 1
Brio and Wu problem solved with r- and h-refinement

Method Initial N L �tol Final N Running time (MATLAB equivalent) Overall error

MMFV 250 – – 250 16.5 (16.5) 0.0091

AMRVAC: TVDLF, Van Leer limiter 50 6 0.005 222 2.4 (16.5) 0.0254
100 6 0.002 314 5.1 (35.2) 0.0135
250 5 0.0005 484 7.2 (49.7) 0.0102

x09.9 9.2 9.3 9.4 9.5 9.6 9.7Fig.
3component
4.2.1. Numerical results

We use N = 250 mesh points again. The left diagram in Fig. 6 shows the density and the v3 component of
the velocity. Note how the Alfvén signals do not change the density. Similarly, the contact discontinuity, the
fast rarefaction and the fast shock are not reflected in v3. Still, the monitor is based on all solution compo-
nents. Indeed, the right diagram in Fig. 6 shows that the mesh movement captures all seven structures in a
balanced way. The seven waves are directly related to the eigen-structure of the 1.75D MHD system, as
depicted in Fig. 1.

Throughout rarefaction fans, the entropy s = cv log(p/qc) should remain constant. We have verified that this
is indeed the case here. Also, for increasing N, the second-order accuracy of the finite volume solver in smooth
regions was confirmed.

A final physical check here is the conservation of solution components. Mass conservation is satisfied, but
energy conservation is not. Between t = 0 and t = 0.08, a constant decrease of energy yields a total loss of 0.2.
This is exactly right though: at the left boundary the only nonzero part of the energy flux (8) is B1B2v2 ¼ 2:5,
whereas at the right boundary it is zero. Integrated over time, this should indeed cause a total energy loss of
0.08 · 2.5 = 0.2.

4.3. Regular and critical solutions

We now consider a more general 1.75D shock tube problem described by Torrilhon [19] to investigate mul-
tiple possible solutions. The problem is set up in the domain x 2 [�1,1.5] with the discontinuity at x = 0. We
simulate for times t 2 [0, 0.4]. In primitive form, the initial conditions are:
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The problem is non-planar if the angle h between the transversal parts (i.e. [B2,B3]T) of BL and BR is not a
multiple of p. Torrilhon describes how h affects the possibility of multiple solutions. Regular r-solutions con-
sist only of shocks or contact discontinuities, whereas critical c-solutions can also contain non-regular waves,
such as compound waves. For critical choices of h, both an r- and c-solution are analytically correct simulta-
neously; h = p is such a choice. In the Brio and Wu example indeed the irregular compound wave from the
c-solution showed up. It depends on the amount of numerical diffusion whether a PDE solver will converge
to the r-solution.

4.3.1. Numerical results

We now consider the almost co-planar case h = 3. Analytically, this has only one r-solution. However, the
numerical solution is attracted towards the nearby critical solution for h = p. Fig. 7 shows the density and the
B2 component of the magnetic field. The solutions resemble the one to the Brio and Wu problem (a c-solu-
tion), but are clearly different from the correct r-solution here.

Increasing the number of mesh points results in smaller mesh cells, hence less numerical diffusion. We study,
for increasing N, the convergence of our numerical solution towards the correct r-solution, just as Torrilhon
[19, Section 4.2.1] does. Fig. 8 shows the density and the B2 component of the magnetic field at [�0.35,�0.1]
for N up to 2500. The dashed line represents the co-planar c-solution to which the N = 100 solution clearly is
attracted. For larger values of N, the solutions converge towards the solid black line of the correct r-solution.
At N = 1000 the solution is about as good as the uniform N = 20,000 solution by Torrilhon: a considerable
improvement.

4.4. Shear Alfvén waves in 1.5D

This test problem was described by Stone and Norman [13] and also used by Tóth and Odstrčil [21] for their
evaluation of different discretization schemes. A homogeneous, uniformly magnetized plasma state is per-
turbed with a localized velocity pulse transverse (v2 := (m2/q) 6¼ 0) to the horizontal (x-direction) magnetic
field. This evolves into two oppositely traveling Alfvén waves that have associated v2: = m2/q and B2

perturbations.
The problem is set up in the domain x 2 [0,3], with the velocity pulse on x 2 [1, 2]. We simulate for times

t 2 [0, 0.8]. The plasma has an adiabatic constant c = 1.4, and B1 ¼ 1. In conservation form, the initial condi-
tions are:
0.

0.
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ρ

Fig. 7.
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½q;m1;m2;B2; e� ¼ ½1; 0; 10�3; 0; 0:5000005025� for x 2 ½1; 2�;
½q;m1;m2;B2; e� ¼ ½1; 0; 0; 0; 0:5000000025� elsewhere,
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where the difference in total energy e is only caused by the difference in v2. In primitive form, all quantities but
v2 are constant. Homogeneous Neumann boundary conditions are used for all components.

When considering linear effects, only v2 and B2 will be perturbed, and all other primitive quantities should
remain constant. Quadratic terms in the flux for m1, however, cause nonlinear effects in the density and energy.
Furthermore, thermal pressure should always be positive.

4.4.1. Numerical experiments

Fig. 9 shows the B2 component of the magnetic induction at t = 0.8 from both the adaptive mesh solution
and the reference solution. In the right diagram, the mesh history is shown. Again, the N = 250 adaptive solu-
tion compares favorably with the 1000 point VAC solution. Analytic computation of the exact solution is
more complicated than with the shock tube problems, because of the interacting right- and left-going waves.
An N = 2500 adaptive solution shows the sharp profile here.

The mesh history reveals that some intermediate structures were captured too, although those are not
in the B2 (nor v2) component. A closer look at the almost zero momentum shows levels slightly off from 0.
These are caused by the nonlinear terms in the m1 flux. The left diagram in Fig. 10 shows multiple levels,
instead of a constant value of 0. Not only do the physical equations justify these levels; changing the num-
ber of mesh points to 100 or 1000 results in the same levels. Furthermore, when changing the initial veloc-
ity perturbation from 10�3 to 10�6 changes the momentum offset from O(10�7) to O(10�13); clearly a
quadratic effect.

The right diagram in Fig. 10 shows the absolute, local errors in the density for the N = 250 solution,
obtained by subtracting the 2500 points reference solution from it. At x = 1 and x = 2, local errors are the
largest, at 10�4. Elsewhere, errors are very small, O(10�8), compared to VAC (O(10�3)) and the adaptive
method of lines (O(10�6), cf. Zegeling and Keppens [27, Fig. 4]).

4.5. Oscillating plasma sheet in 1.5D: fast wave effects

To investigate the necessity of an implicit solver, Tóth et al. [20] set up a problem that leads to a very strict
CFL limit, i.e. very small time steps. A plasma sheet is surrounded by a vacuum which is modeled by a low
density, low pressure plasma. At the left and right boundaries are perfectly conducting walls with reflective
boundary conditions.

The problem is set up on the domain x 2 [0,1], with the plasma sheet on x 2 [0.45, 0.55]. We simulate for
times t 2 [0, 2]. The plasma has c = 1.4, and �B1 ¼ 0. In primitive form, the initial conditions are:
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½q;m1;m2;B2; p� ¼
½10�3; 0; 0; 1:1; 10�4� for x 2 ½0; 0:45�;
½ 1; 0; 0; 0:6; 0:3201� for x 2 ½0:45; 0:55�;
½10�3; 0; 0; 1:0; 10�4� for x 2 ½0:55; 1�.

8><>: ð33Þ
In the plasma sheet, the total pressure ptot = p + B2/2 = 0.5001 is in balance with the pressure in the ‘vacuum’
at the right, and is about 10% less than in the ‘vacuum’ at the left. Therefore the sheet will start to move right-
ward until the changing pressure imbalance reverses the movement leftward. Because of conservation of mag-
netic flux in the left and right ‘vacuum’, this will result in an ongoing oscillation of the sheet.

A reflective wall means zero flux for all components except for the ones orthogonal to the boundary, hence
only m1 is nonzero here. The zero fluxes cannot be obtained by setting the values in the ghost cells outside the
domain to zero. As fluxes are computed at cell edges, and solution values are set on cell centers, interpolation
will yield slightly nonzero flux values on the boundaries. Instead, we make the m1 values asymmetric around
the two boundaries (i.e. Q�j�1/2 = �Qj + 1/2 at the left, see also Fig. 2), and impose an exactly zero flux for all
but the first momentum equation on the two boundaries (i.e. F0 = FN = 0, except for the second component of
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the flux vector F). Now, total mass, magnetic field and energy are conserved numerically up to machine
precision.

4.5.1. Numerical experiments
We first look at the slow oscillation that should set in. The oscillating sheet can be approximated by a point

mass with total mass M = 0.1 at distance L0 = 0.5 from the walls with some equilibrium value B0 for the mag-
netic field. The point mass oscillates around this equilibrium, driven by the difference in magnetic pressure
between the left and right half. By conservation of magnetic flux (3), the total magnetic flux in the equilibrium
and at an extreme position are equal:
BLðL0 þ DLÞ ¼ ðB0 � DBÞðL0 þ DLÞ ¼ B0L0;

BRðL0 � DLÞ ¼ ðB0 þ DBÞðL0 � DLÞ ¼ B0L0.
A linear approximation gives: DB/B0 � DL/L0. Describing the oscillation as x(t) = L0 + DL sin(xt), and dif-
ferentiating twice gives x00(t) = �DLx2 sin(xt). Inserting this into F = Mx00 for the rightmost extremum gives:
�MDL ¼ B2

L=2� B2
R=2 ¼ �2B2

0=L0DL. The oscillation is now characterized by its frequency and amplitude:
x �

ffiffiffiffiffiffiffiffiffi
2B2

0

ML0

s
; and DL � ðDB=B0ÞL0.
We estimate B0 � 0.5 Æ 1.1 + 0.5 Æ 1 = 1.05 and DB � 0.1. This yields x � 6.64, i.e. the period T � 0.946. The
maximum of the total momentum Mv1 is MxDL � 0.158. Our numerical experiments yield a period of
T = 0.942 and a momentum amplitude of 0.15. This is quite accurate, considering the simplistic approxima-
tion sketched above.

A simulation up to t = 2 with N = 250 mesh points takes about 25,000 time steps, and only 220 s to run,
with the CFL number limited to 0.5. The right diagram in Fig. 11 clearly shows how the adaptive mesh cap-
tures the oscillation. The left diagram shows the solution profiles of the density q and total pressure ptot at
t = 1. The oscillation is driven by the imbalance in magnetic (and hence total) pressure. In the diagram the
sheet is moving rightward, because of high pressure at the left. The solution profile is much less diffused than
in the results by Tóth et al. [20, Fig. 3] and Zegeling and Keppens [27, Fig. 5].

We now focus on fast waves in the solution and simulate for early times t 2 [0, 0.15]. The right diagram
in Fig. 12 shows the mesh history in more detail for early times. Within the sheet, additional waves are
tracked repeatedly. They are initiated by a wave that continuously moves through the ‘vacuum’ between
the left wall and the left edge of the sheet; it touches the sheet for the first time at t � 0.026. The left
diagram again shows the density and total pressure, for t = 0.1. Both show ‘physical staircasing’ on
top of their profile, initiated by three touches of the fast wave. Notice that a similar fast wave moves
through the ‘vacuum’ at the right. The wave is less strong and hence causes hardly any ‘staircasing’ at
first.

To study the formation of the ‘physical staircase’, Fig. 13 shows four snapshots in time of the density
profile. The top row shows the left ‘vacuum’ part and the bottom row shows the high density plasma
sheet. Not the entire plasma sheet starts to oscillate at once: first only the left edge of the sheet slowly
moves rightward. This leads to an increased density shock on top of the sheet that moves towards the
right edge. The bottom diagrams show this expanding shock wave. Only when it touches the right edge,
the entire sheet is in oscillation (not shown). In the meantime, other movement takes place as well. As
the diagrams in the top row of Fig. 13 show, a fast magnetosonic wave moves between the left wall
and the left edge of the plasma sheet. The wave is reflected on both sides because of the reflective wall
and the high density in the plasma sheet. The fast wave speed should be equal to v1 + cf, with cf as
defined in (9). As v1 = 0 here, this yields cf � 34.8 in the ‘vacuum’ at the left, and cf � 31.6 in the ‘vac-
uum’ at the right. The wave speed at the left in our numerical simulation is equal to 34.85, which is very
accurate. The first staircase formation is about to occur in the third column of Fig. 13: the fast wave will
soon touch the sheet edge. In the fourth column, the fast wave has almost completed its second period,
and in the meantime the first step in the staircase has properly formed. This process will continue forever,
although left-moving waves will start to interact after t � 0.11. We stress that the observed staircasing is
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definitely physical and should not be confused with numerical staircasing sometimes seen in finite volume
methods. The recurring interactions between the fast wave and the plasma sheet are in fact repeated, dis-
tinct shock tube problems which change density and momentum levels in steps. Local shock tube exper-
iments near the plasma’s edge have also confirmed this.

Both Tóth et al. [20] and Zegeling and Keppens [27] have not shown the above fast wave effects.
A probable explanation is their use of implicit time solvers, which take too big time steps to properly cap-
ture the fast waves. We also tested an explicit AMRVAC solution. Having seen that the staircasing is
mainly visible in the m1 component of the momentum, we base the refinement on m1 by 80% and on
the density by 20%. Again we use the TVDLF solver with a Van Leer limiter. The initial mesh has
N = 100. The refinement tolerance �tol had to be lowered to 0.0005. Fig. 14 shows the results. The left
diagram shows the AMRVAC solution for the density. Notice how the refinement has properly detected
the fast magnetosonic wave in the left vacuum. The right diagram focuses on the staircase formation in m1

within the plasma sheet. It compares AMRVAC and our MMFV result. AMRVAC seems more diffused,
and the refinement could be better at the stair steps. Running time was 37 s (FORTRAN), our MMFV
run took 36 s (MATLAB).
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Fig. 13. Oscillating plasma sheet, physical staircasing. Density profiles at t = 0, t = 0.012, t = 0.023, and t = 0.047. Top row: movement of
a fast magnetosonic wave through the left ‘vacuum’. Bottom row: staircase formation in the high density sheet.
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5. Conclusions

Adaptive methods for solving PDE systems are a commonly used technique to increase numerical accuracy
and save computing costs. Often, the adaptive methods are manually finetuned for the specific problem under
consideration. A truly robust adaptive method should adapt itself to each new problem considered, without
additional fine-tuning. In this paper, we considered such a method. Using a sophisticated monitor function,
conservative solution interpolation and a robust finite volume solver, the method is suitable for any nonlinear
system of hyperbolic PDEs based on conservation laws, where numerical conservation is guaranteed. After
earlier successful application to hyperbolic traffic flow PDEs and problems from gas dynamics, we now used
the method on a selection of problems from MHD.

Each of the example problems has one or more interesting physical features that were accurately tracked by
the adaptive method. The 1.75D shock wave problem showed automatic and balanced refinement for all indi-
vidual solution components, thanks to the monitor function used. The study of regular and critical solutions
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showed how nearby critical solutions are a strong attractor for numerical solutions. The use of our adaptive
method shows convergence to the correct solution with 20 times fewer mesh points than for a uniform method.
The shear Alfvén problem showed correct tracking and propagation of Alfvén waves. Moreover, nonlinear
effects in the flux terms were accurately computed, with average errors of O(10�8). Finally, the oscillating
plasma sheet problem challenged the method because of the severe limit on the time step. Even after a large
number of time steps, the important parts in the solution are tracked by our adaptive method. The oscillation
that should set in is correctly represented. Moreover, the high speed magnetosonic waves in the two ‘vacuum’
parts turn out to cause a ‘physical staircasing’ in the plasma sheet. Although this effect can be explained from
the physical formulas, it had not been studied before. The use of an adaptive method increased the accuracy
sufficiently to let these effects show up noticeably in the numerical results.

The Brio and Wu shock tube problem was used to benchmark our adaptive method. The gain with respect
to a uniform method is at least a factor three. For two- or higher-dimensional models this gain factor counts
exponentially. The overall accuracy of the finite volume method is first order, due to first order accuracy of the
method at discontinuities. Focusing on smooth parts, however, correctly shows the second order nature of the
method. Also, a short comparison with h-refinement shows that our r-refinement method can reach smaller
errors more efficiently.

Although Lax–Friedrichs-type methods are known for their numerical viscosity, the combination of a local

Lax–Friedrichs flux in combination with a moving mesh yields very accurate results, with still good compu-
tational performance. We will extend the use of this robust adaptive technique to higher-dimensional models.
The use of higher-order solvers, and a more accurate solution interpolation step during mesh moving, are pos-
sible future improvements during that process.
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